[Proposed] df50_tr,df005_tst(인덱스겹침)

Author

김보람

Published

February 15, 2024

imports

import pandas as pd
import numpy as np
import sklearn
import pickle 
import time 
import datetime
import warnings
warnings.filterwarnings('ignore')
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
    fraudTrain = pickle.load(file)    
try_4(fraudTrain, 10, 11406996.079461852,0.8)
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.908907 0.055864 0.965753 0.105618 0.973903 True Proposed 0.132097 9009 amt 0.500278 26215 0.005569 None 1.140700e+07 0.8

11406996오잉?

11406996
11406996
1e7 < 11406996
True
12000000 == 12e6
df_results = try_4(fraudTrain, 10,11406996,0.8)
df_results = try_4(fraudTrain, 10,11406996,0.9, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.7, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.6, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.5, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.4, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.2, prev_results=df_results)
NameError: name 'ymdhms' is not defined

ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.919550 0.062137 0.926667 0.116464 0.964368 True Proposed 0.132041 9009 amt 0.499611 26215 0.005722 None 11406996 0.8
1 GCN None 0.944574 0.088903 0.946309 0.162536 0.980860 True Proposed 0.131615 9009 amt 0.498057 26215 0.005684 None 11406996 0.9
2 GCN None 0.891818 0.044317 0.922535 0.084571 0.961205 True Proposed 0.131984 9009 amt 0.500278 26215 0.005417 None 11406996 0.7
3 GCN None 0.864009 0.038399 0.940397 0.073785 0.951729 True Proposed 0.133119 9009 amt 0.503719 26215 0.005760 None 11406996 0.6
4 GCN None 0.843525 0.033318 0.927632 0.064325 0.937046 True Proposed 0.132580 9009 amt 0.501499 26215 0.005798 None 11406996 0.5
5 GCN None 0.822544 0.029547 0.870370 0.057154 0.919623 True Proposed 0.131047 9009 amt 0.494394 26215 0.006180 None 11406996 0.4
6 GCN None 0.810757 0.022822 0.756579 0.044307 0.870339 True Proposed 0.131189 9009 amt 0.496059 26215 0.005798 None 11406996 0.3
7 GCN None 0.764753 0.018865 0.797297 0.036858 0.868959 True Proposed 0.132069 9009 amt 0.499944 26215 0.005646 None 11406996 0.2
df_results = try_4(fraudTrain, 10,1e7,0.8)
df_results = try_4(fraudTrain, 10,1e8,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e9,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e10,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,12e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,13e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,14e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,15e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,16e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,17e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,18e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,19e6,0.8, prev_results=df_results)


ymdhms = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S') 
df_results.to_csv(f'../results/{ymdhms}-proposed.csv',index=False)

df_results
model time acc pre rec f1 auc graph_based method throw_rate train_size train_cols train_frate test_size test_frate hyper_params theta gamma
0 GCN None 0.923670 0.065350 0.914474 0.121983 0.967187 True Proposed 0.132012 9009 amt 0.499278 26215 0.005798 None 1.000000e+07 0.8
1 GCN None 0.757467 0.020737 0.817073 0.040447 0.864097 True Proposed 0.133176 9009 amt 0.502498 26215 0.006256 None 1.000000e+08 0.8
2 GCN None 0.708068 0.013990 0.724832 0.027449 0.790459 True Proposed 0.131189 9009 amt 0.496392 26215 0.005684 None 1.000000e+09 0.8
3 GCN None 0.662865 0.012895 0.766667 0.025364 0.796297 True Proposed 0.133347 9009 amt 0.504718 26215 0.005722 None 1.000000e+10 0.8
4 GCN None 0.918749 0.065992 0.955414 0.123457 0.975293 True Proposed 0.130735 9009 amt 0.493728 26215 0.005989 None 1.000000e+07 0.8
5 GCN None 0.926378 0.073218 0.962025 0.136079 0.973912 True Proposed 0.132523 9009 amt 0.500611 26215 0.006027 None 1.000000e+07 0.8
6 GCN None 0.917681 0.057819 0.949640 0.109001 0.969563 True Proposed 0.132665 9009 amt 0.503275 26215 0.005302 None 1.000000e+07 0.8
7 GCN None 0.924814 0.061244 0.934307 0.114953 0.971099 True Proposed 0.132069 9009 amt 0.501166 26215 0.005226 None 1.000000e+07 0.8
8 GCN None 0.914553 0.056914 0.978261 0.107570 0.973465 True Proposed 0.132268 9009 amt 0.501832 26215 0.005264 None 1.200000e+07 0.8
9 GCN None 0.916498 0.062258 0.966667 0.116983 0.966392 True Proposed 0.132892 9009 amt 0.502942 26215 0.005722 None 1.300000e+07 0.8
10 GCN None 0.907191 0.052755 0.937500 0.099889 0.964317 True Proposed 0.131842 9009 amt 0.499500 26215 0.005493 None 1.400000e+07 0.8
11 GCN None 0.898074 0.045520 0.933824 0.086808 0.963176 True Proposed 0.132410 9009 amt 0.502609 26215 0.005188 None 1.500000e+07 0.8
12 GCN None 0.901430 0.057854 0.934911 0.108966 0.963166 True Proposed 0.132580 9009 amt 0.499611 26215 0.006447 None 1.600000e+07 0.8
13 GCN None 0.896548 0.046643 0.904110 0.088710 0.950958 True Proposed 0.131984 9009 amt 0.499833 26215 0.005569 None 1.700000e+07 0.8
14 GCN None 0.890254 0.054659 0.965116 0.103459 0.966236 True Proposed 0.132608 9009 amt 0.499389 26215 0.006561 None 1.800000e+07 0.8
15 GCN None 0.890902 0.045927 0.907285 0.087428 0.957087 True Proposed 0.131473 9009 amt 0.497280 26215 0.005760 None 1.900000e+07 0.8