import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
10, 11406996.079461852,0.8) try_4(fraudTrain,
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.908907 | 0.055864 | 0.965753 | 0.105618 | 0.973903 | True | Proposed | 0.132097 | 9009 | amt | 0.500278 | 26215 | 0.005569 | None | 1.140700e+07 | 0.8 |
11406996오잉?
11406996
11406996
1e7 < 11406996
True
12000000 == 12e6
= try_4(fraudTrain, 10,11406996,0.8)
df_results = try_4(fraudTrain, 10,11406996,0.9, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.7, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.6, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.5, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.4, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10,11406996,0.2, prev_results=df_results) df_results
NameError: name 'ymdhms' is not defined
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.919550 | 0.062137 | 0.926667 | 0.116464 | 0.964368 | True | Proposed | 0.132041 | 9009 | amt | 0.499611 | 26215 | 0.005722 | None | 11406996 | 0.8 |
1 | GCN | None | 0.944574 | 0.088903 | 0.946309 | 0.162536 | 0.980860 | True | Proposed | 0.131615 | 9009 | amt | 0.498057 | 26215 | 0.005684 | None | 11406996 | 0.9 |
2 | GCN | None | 0.891818 | 0.044317 | 0.922535 | 0.084571 | 0.961205 | True | Proposed | 0.131984 | 9009 | amt | 0.500278 | 26215 | 0.005417 | None | 11406996 | 0.7 |
3 | GCN | None | 0.864009 | 0.038399 | 0.940397 | 0.073785 | 0.951729 | True | Proposed | 0.133119 | 9009 | amt | 0.503719 | 26215 | 0.005760 | None | 11406996 | 0.6 |
4 | GCN | None | 0.843525 | 0.033318 | 0.927632 | 0.064325 | 0.937046 | True | Proposed | 0.132580 | 9009 | amt | 0.501499 | 26215 | 0.005798 | None | 11406996 | 0.5 |
5 | GCN | None | 0.822544 | 0.029547 | 0.870370 | 0.057154 | 0.919623 | True | Proposed | 0.131047 | 9009 | amt | 0.494394 | 26215 | 0.006180 | None | 11406996 | 0.4 |
6 | GCN | None | 0.810757 | 0.022822 | 0.756579 | 0.044307 | 0.870339 | True | Proposed | 0.131189 | 9009 | amt | 0.496059 | 26215 | 0.005798 | None | 11406996 | 0.3 |
7 | GCN | None | 0.764753 | 0.018865 | 0.797297 | 0.036858 | 0.868959 | True | Proposed | 0.132069 | 9009 | amt | 0.499944 | 26215 | 0.005646 | None | 11406996 | 0.2 |
= try_4(fraudTrain, 10,1e7,0.8)
df_results = try_4(fraudTrain, 10,1e8,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e9,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e10,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,1e7,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,12e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,13e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,14e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,15e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,16e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,17e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,18e6,0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10,19e6,0.8, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.923670 | 0.065350 | 0.914474 | 0.121983 | 0.967187 | True | Proposed | 0.132012 | 9009 | amt | 0.499278 | 26215 | 0.005798 | None | 1.000000e+07 | 0.8 |
1 | GCN | None | 0.757467 | 0.020737 | 0.817073 | 0.040447 | 0.864097 | True | Proposed | 0.133176 | 9009 | amt | 0.502498 | 26215 | 0.006256 | None | 1.000000e+08 | 0.8 |
2 | GCN | None | 0.708068 | 0.013990 | 0.724832 | 0.027449 | 0.790459 | True | Proposed | 0.131189 | 9009 | amt | 0.496392 | 26215 | 0.005684 | None | 1.000000e+09 | 0.8 |
3 | GCN | None | 0.662865 | 0.012895 | 0.766667 | 0.025364 | 0.796297 | True | Proposed | 0.133347 | 9009 | amt | 0.504718 | 26215 | 0.005722 | None | 1.000000e+10 | 0.8 |
4 | GCN | None | 0.918749 | 0.065992 | 0.955414 | 0.123457 | 0.975293 | True | Proposed | 0.130735 | 9009 | amt | 0.493728 | 26215 | 0.005989 | None | 1.000000e+07 | 0.8 |
5 | GCN | None | 0.926378 | 0.073218 | 0.962025 | 0.136079 | 0.973912 | True | Proposed | 0.132523 | 9009 | amt | 0.500611 | 26215 | 0.006027 | None | 1.000000e+07 | 0.8 |
6 | GCN | None | 0.917681 | 0.057819 | 0.949640 | 0.109001 | 0.969563 | True | Proposed | 0.132665 | 9009 | amt | 0.503275 | 26215 | 0.005302 | None | 1.000000e+07 | 0.8 |
7 | GCN | None | 0.924814 | 0.061244 | 0.934307 | 0.114953 | 0.971099 | True | Proposed | 0.132069 | 9009 | amt | 0.501166 | 26215 | 0.005226 | None | 1.000000e+07 | 0.8 |
8 | GCN | None | 0.914553 | 0.056914 | 0.978261 | 0.107570 | 0.973465 | True | Proposed | 0.132268 | 9009 | amt | 0.501832 | 26215 | 0.005264 | None | 1.200000e+07 | 0.8 |
9 | GCN | None | 0.916498 | 0.062258 | 0.966667 | 0.116983 | 0.966392 | True | Proposed | 0.132892 | 9009 | amt | 0.502942 | 26215 | 0.005722 | None | 1.300000e+07 | 0.8 |
10 | GCN | None | 0.907191 | 0.052755 | 0.937500 | 0.099889 | 0.964317 | True | Proposed | 0.131842 | 9009 | amt | 0.499500 | 26215 | 0.005493 | None | 1.400000e+07 | 0.8 |
11 | GCN | None | 0.898074 | 0.045520 | 0.933824 | 0.086808 | 0.963176 | True | Proposed | 0.132410 | 9009 | amt | 0.502609 | 26215 | 0.005188 | None | 1.500000e+07 | 0.8 |
12 | GCN | None | 0.901430 | 0.057854 | 0.934911 | 0.108966 | 0.963166 | True | Proposed | 0.132580 | 9009 | amt | 0.499611 | 26215 | 0.006447 | None | 1.600000e+07 | 0.8 |
13 | GCN | None | 0.896548 | 0.046643 | 0.904110 | 0.088710 | 0.950958 | True | Proposed | 0.131984 | 9009 | amt | 0.499833 | 26215 | 0.005569 | None | 1.700000e+07 | 0.8 |
14 | GCN | None | 0.890254 | 0.054659 | 0.965116 | 0.103459 | 0.966236 | True | Proposed | 0.132608 | 9009 | amt | 0.499389 | 26215 | 0.006561 | None | 1.800000e+07 | 0.8 |
15 | GCN | None | 0.890902 | 0.045927 | 0.907285 | 0.087428 | 0.957087 | True | Proposed | 0.131473 | 9009 | amt | 0.497280 | 26215 | 0.005760 | None | 1.900000e+07 | 0.8 |